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Supplementary Note 1: Group template of ICNs from Human Connectome Project and Genomics 

Superstruct Project 

The group template of ICNs was derived from healthy populations in Human Connectome Project (HCP) 

and Genomics Superstruct Project (GSP) with different temporal resolutions (HCP: 0.72 s; GSP: 3 s). HCP 

and GSP datasets were preprocessed using preprocessing pipelines similar to those introduced in the main 

text. In total, 1005 subjects were chosen from the GSP dataset and 823 subjects were chosen from the HCP 

dataset. For each of these independent datasets, principal component analysis (PCA) was performed to 

reduce the subject-specific data into 110 principal components (PCs) that preserve more than 95% variance 

of the original data. The 110 principal components of each subject were concatenated across subjects and 

then reduced to 100 PCs at the group level. The infomax ICA algorithm was conducted to decompose the 

100 PCs into 100 independent components (ICs). This procedure was repeated 20 times in ICASSO, in 

which the best run was selected to ensure estimation stability. 

We used the template as a reference within a spatially constrained ICA 1 to compute individual spatial maps 

and time courses for our datasets. Considering the relevance of brain regions and networks to chronic pain, 

we selected 45 intrinsic connectivity networks (ICNs) from 100 ICs and categorized them into 6 functional 

networks (Supplementary Figures 1-6 and Table 1). 
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Supplementary Figure 1. Spatial maps (SMs) of intrinsic connectivity networks (ICNs) in the 

sensorimotor network. ICNs were thresholded at |t|>3 for visualization, where a one-sample t-test was 

computed across single-subject SMs. 

  



4 
 

 

Supplementary Figure 2. Spatial maps (SMs) of intrinsic connectivity networks (ICNs) in the default 

mode network. ICNs were thresholded at |t|>3 for visualization, where a one-sample t-test was computed 

across single-subject SMs. 
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Supplementary Figure 3. Spatial maps (SMs) of intrinsic connectivity networks (ICNs) in the subcortical 

network. ICNs were thresholded at |t|>3 for visualization, where a one-sample t-test was computed across 

single-subject SMs. 
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Supplementary Figure 4. Spatial maps (SMs) of intrinsic connectivity networks (ICNs) in the fronto-

parietal network. ICNs were thresholded at |t|>3 for visualization, where a one-sample t-test was 

computed across single-subject SMs. 
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Supplementary Figure 5. Spatial maps (SMs) of intrinsic connectivity networks (ICNs) in the visual 

network. ICNs were thresholded at |t|>3, where a one-sample t-test was computed across single-subject 

SMs. 

  



8 
 

 

Supplementary Figure 6. Spatial maps (SMs) of intrinsic connectivity networks (ICNs) in the auditory 

network. ICNs were thresholded at |t|>3, where a one-sample t-test was computed across single-subject 

SMs. 
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Supplementary Table 1: Peak Coordinates of Intrinsic Connectivity Networks (ICNs) 

ICNs X Y Z 

Sub-cortical network (SCN) 

Caudate (69) 8.5 8.5 12.5 
Dorsal medial thalamus (53) -2.5 -12.5 2.5 
Putamen (98) -26.5 2.5 0.5 
Caudate (99) 21.5 11.5 -3.5 

Ventral lateral thalamus (45) -9.5 -15.5 9.5 

Auditory network (ADN) 

Superior temporal gyrus ([STG], 21) 57.5 -17.5 6.5 
Rolandic operculum ([Rolandic], 56) 44.5 -3.5 5.5 

Sensorimotor network (SMN) 

Postcentral gyrus ([PoCG], 3) 53.5 -5.5 27.5 

Left postcentral gyrus ([L PoCG], 9) -39.5 -23.5 57.5 
Paracentral lobule ([ParaCL], 2) 0.5 -23.5 66.5 
Right postcentral gyrus ([R PoCG], 11) 39.5 -18.5 57.5 
Superior parietal lobule ([SPL], 27) -18.5 -44.5 66.5 
Paracentral lobule ([ParaCL], 54) -21.5 -8.5 59.5 
Precentral gyrus ([PreCG], 66) 0.5 3.5 60.5 
Postcentral gyrus ([PoCG], 72) -47.5 -27.5 42.5 

Visual network (VSN) 

Calcarine gyrus ([CalcarineG], 16) 17.5 -62.5 8.5 
Middle occipital gyrus ([MOG], 5) -24.5 -93.5 2.5 
Cuneus (15) 2.5 -84.5 15.5 
Right middle occipital gyrus ([R MOG], 12) 38.5 -80.5 5.5 
Fusiform gyrus (93) 29.5 -41.5 -11.5 
Inferior occipital gyrus ([IOG], 20) -33.5 -83.5 11.5 
Lingual gyrus ([LingualG], 8) -5.5 -81.5 -3.5 

Middle temporal gyrus ([MTG], 77) -45.5 -56.5 -8.5 

Fronto-parietal network (FPN) 

Inferior parietal lobule ([IPL], 68) 47.5 -59.5 42.5 
Insula (33) 36.5 21.5 -5.5 
Superior medial frontal gyrus ([SMFG], 43) -0.5 48.5 36.5 
Inferior frontal gyrus ([IFG], 70) -47.5 38.5 -0.5 
Right inferior frontal gyrus ([R IFG], 61) 53.5 23.5 12.5 

Middle frontal gyrus ([MiFG], 55) 47.5 26.5 26.5 
Inferior parietal lobule ([IPL], 63) -53.5 -50.5 44.5 
Superior motor area ([Superior MA], 84) -57.5 -45.5 26.5 
Superior frontal gyrus ([SFG], 96) -24.5 27.5 50.5 
Middle frontal gyrus ([MiFG], 88) 32.5 45.5 27.5 
Left inferior parietal lobule ([L IPL], 81) -54.5 -32.5 44.5 
Middle cingulate cortex ([MCC], 37) 17.5 27.5 36.5 
Inferior frontal gyrus ([IFG], 67) 41.5 47.5 0.5 

Middle frontal gyrus ([MiFG], 38) -29.5 53.5 8.5 
Middle cingulate cortex ([MCC], 91) 2.5 -3.5 48.5 

Default-mode network (DMN) 

Precuneus (32) -6.5 -68.5 36.5 
Precuneus (40) -9.5 -56.5 15.5 
Anterior cingulate cortex/medial prefrontal cortex 
([ACC/mPFC], 23) 

0.5 41.5 3.5 

Posterior cingulate cortex ([PCC], 71) 0.5 -29.5 26.5 
Anterior cingulate cortex/medial prefrontal cortex 
([ACC/mPFC], 17) 

-6.5 12.5 -8.5 

Precuneus (51) 0.5 -53.5 51.5 
Posterior cingulate cortex ([PCC], 94) -0.5 -59.5 32.5 
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Supplementary Note 2: Brain parcellation using Yeo atlas  

To increase the validity of our study, we tested an additional parcellation strategy of using the 7-network 

functional atlas by Yeo and colleagues 2. Details of the parcellation strategy can be found at 

https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/ 

Yeo2011_fcMRI_clustering. We added 6 regions in the subcortical network (bilateral thalamus, bilateral 

caudate, and bilateral putamen) and 6 regions in the sensorimotor network (bilateral postcentral gyrus, 

bilateral precentral gyrus, and bilateral paracentral lobule) from AAL atlas to match the regions identified 

from group independent component analysis, resulting in a parcellation of 61 regions and 8 networks 

(Supplementary Figure 7). 

 

 

Supplementary Figure 7. Brain parcellation using Yeo functional atlas and static functional connectivity 

matrix. 
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Supplementary Figure 8. Determining the optimal number of clusters varying from 2-10. The Silhouette 

method was used, and the optimal number was 2. 
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Supplementary Figure 9. Details of top 100 connections (as indexed by the strength of connectivity) in State 

1 (left panel) and State 2 (right panel) with labels of ICNs. 
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Supplementary Figure 10. Findings of clustering analysis based on Yeo parcellation. A. Top 100 of the 

functional connectivity in two states, a more frequent (85% of total occurrences) and sparsely connected 

State 1 and a less frequent (15% of total occurrences) and more strongly interconnected State 2. In State 2, 

we observed strong connectivity between SCN and SMN. B. Compared to HCs, patients with cLBP had 

significantly lower fraction rate and dwell time in State 1, while significantly higher fraction rate and dwell 

time in State 2. LBP Pre: patients before performing maneuver; LBP Post: patients after performing 

maneuver; HC: healthy control. LBP Sess1: patients in Session 1; LBP Sess2: patients in Session 2. N=90 

and 74 for cLBP patients and HCs in Dataset 1, N=30 and 30 for cLBP patients and HCs in Dataset 2. Data 

are presented by mean ± standard error of mean (SEM). Asterisks represent two-sided pFDR<0.05 for two-

sample (between LBP and HC) and paired-sample (between LBP pre and post, between LBP sess1 and 

sess2) t tests. Each circle represents the value (fraction rate or dwell time) for an individual. 
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Supplementary Figure 11. Group differences of dorsal medial/ventral medial (DM/VM) nucleus-whole 

brain static connectivity. We found that cLBP patients had lower connectivity between DM/VM and 

superior frontal gyrus (SFG), insula (INS), and postcentral gyrus (PoCG).  
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Supplementary Note 3: Dynamic thalamocortical connectivity using FSL sub-thalamic atlas 

We used the 7 FSL sub-thalamic nuclei, which subdivides the thalamus based on structural connectivity 

(estimated using probabilistic diffusion tractography on DTI data), into the following seven large cortical 

areas: primary motor, somatosensory, occipital, prefrontal, pre-motor, parietal, and temporal 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases) 3. We performed the same analyses as detailed in the 

manuscript (seed-based whole-brain dFNC was estimated using seed-based correlation analysis between 

the time courses of these sub-thalamic regions and time courses of other voxels in the brain in State 1 and 

State 2; statistical comparisons were performed between cLBP and HCs and between pre-maneuver and 

post-maneuver). 

Within State 2, in addition to the results we reported using the ICA-derived masks, we also found 

significantly decreased connectivity between the temporal thalamic nucleus and right middle temporal 

gyrus (MTG) after the maneuver.  

Within State 1, in addition to the results we reported using the ICA-derived masks, we found that cLBP 

patients had significantly higher connectivity between the occipital thalamic nucleus and posterior cingulate 

cortex (PCC) and between the parietal thalamic nucleus and supramarginal gyrus (SMG), while decreased 

connectivity between the prefrontal thalamic nucleus and insula/inferior frontal gyrus (IFG). We also found 

that the maneuver could increase connectivity between the pre-motor thalamic nucleus and supplementary 

motor area (SMA).  

In summary, our findings using the ICA parcellated thalamus were consistent with findings using the FSL 

thalamic atlas. Specifically, the results from the primary motor thalamic nucleus (the principal output of 

VL is primary motor cortex) and somatosensory thalamic nucleus (the principal output of VPL is PoCG 

and ParaCL) were consistent with the results obtained from VL/VPL. Results from prefrontal thalamic 

nucleus (the principal output of DM is prefrontal cortex) were consistent with the results obtained from 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases
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DM/VM. Nevertheless, there were some other thalamocortical connections that may have accounted for 

the connectivity difference between the two groups.  

 

Supplementary Figure 12. Seed-based analysis using 7 FSL sub-thalamic atlas. Solid squares indicate 

findings consistent with the two ICA-derived masks. We performed two sample t-test when comparing 
cLBP and HCs, and paired-sample t-test when comparing pre- and post-maneuver. Two-sided p values 

were reported. Statistical maps were thresholded at p < 0.005 at voxel level and pFDR < 0.05 at cluster level. 
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Supplementary Figure 13. Group differences of putamen-whole brain dFNC in two dynamic states. In State 

1, cLBP patients had lower connectivity between the putamen and amygdala (AMY), postcentral gyrus 

(PoCG), hippocampus (HIPP), and insula (INS). In State 2, patients had lower connectivity between the 

putamen and anterior cingulate cortex (ACC), caudate (CAU), and dorsalateral prefrontal cortex (DLPFC). 
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Supplementary Figure 14. Group differences of caudate-whole brain dFNC in two dynamic states. In State 

2, cLBP patients had lower connectivity between the caudate and anterior cingulate cortex (ACC). 
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Supplementary Note 4: Vigilance-related analyses 

In Falahpour et al., authors developed an fMRI-based spatial template to evaluate instantaneous level of 

vigilance during the scan 4. We used this template (i.e., whole-brain spatial patterns for ‘non-caffeine 

eyes-open’ condition) to assess the vigilance level of our participants. Technical details can be found 

within the paper 4. In brief, we calculated the spatial correlation between the template and fMRI BOLD at 

each time point, resulting in a time course of coefficients reflecting the putative vigilance index. The 

standard deviation of the vigilance time series was used to summarize each individual’s fluctuations in 

vigilance level during the resting-state fMRI scan. In addition, since the vigilance template-based 

approach does not give information about a subject’s mean vigilance level during a scan, we also used 

global signal amplitude (GSA), which has demonstrated to be strongly related to mean vigilance level 5,6. 

We calculated these two measures for two different states (i.e., calculated standard deviation of vigilance 

time series and GSA within Gaussian windows correspond to State 1 and State 2, respectively). We used 

two-way ANOVA with factors of group (i.e., pre-maneuver cLBP, post-maneuver cLBP, and HCs) and 

state (i.e., State 1 and State 2) to assess vigilance levels. We did not find any significant main effects of 

group (F=1.58, p=0.21), state (F=2.19, p=0.14), and their interaction (F=1.73, p=0.18) on the mean level 

of vigilance (i.e., GSA). We also did not find any significant main effects of group (F=0.86, p=0.42), state 

(F=0.89, p=0.35), and their interaction (F=0.16, p=0.85) on fluctuations of vigilance. 

In order to further evaluate vigilance level in the dataset, we performed an additional control analysis by 

using the proposed automatic sleep staging support vector machine (SVM) classifier described in 

Tagliazucchi E, et al. 7,8 to examine if there were drowsiness/vigilance differences between cLBP patients 

and HCs, as well as between State 1 and State 2. In other words, we argued that 1) if the SVM classifier 

could significantly classify cLBP patients and HCs, then these two cohorts of participants might have had 

systematic differences in drowsiness during the scans; 2) if the SVM classifier could significantly classify 

State 1 and State 2, then these two states of functional connectivity may be driven by the differences in 

drowsiness during the scans. We followed the procedure in Tagliazucchi et al. by parcellating brain 
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activity into 22 ROIs, and extracted rsFC features. Details of coordinates of ROIs and patterns can be 

found in Table 3 and Figure S2 within the manuscript 8. For the discrimination of average 

drowsiness/vigilance level between the two cohorts, rsFC features were calculated using the entire scans 

between ROIs. For the discrimination of drowsiness/vigilance level between two states, the dFNC 

features were calculated within Gaussian windows corresponding to State 1 and State 2 respectively. The 

SVM classifier was used based on the leave-one-out cross-validation strategy (LOOCV). Nonparametric 

permutation tests (1000 times) were employed to estimate the statistical significance of the observed 

classification accuracy. In permutation testing, we randomly permuted the class labels of the data prior to 

training. LOOCV was then performed on the permuted class dataset and the procedure was repeated 1000 

times. If the classifier trained on real class labels had an accuracy exceeding the 95% confidence interval 

generated from the accuracies of the classifiers trained on randomly relabeled class labels, this classifier 

was considered to be well-performing. 

As shown in Supplementary Figure 15, the SVM classifier could not significantly discriminate cLBP 

patients from HCs (Accuracy = 53.2%; p = 0.30, permutation testing), nor could it discriminate State 1 

from State 2 (Accuracy = 55.4%; p = 0.10, permutation testing). Therefore, we believe that there was not 

a systematic difference in drowsiness/vigilance levels between cLBP and HCs or between State 1 and 

State 2. 

 

Supplementary Figure 15. Classification accuracies for discriminating (A) cLBP and HCs, and (B) State 1 

and State 2, using the automatic sleep staging SVM classifier.  
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Supplementary Note 5: Head-motion related analyses 

We used the framewise displacement (FD) to express instantaneous head motion: 

 𝐹𝐷𝑖 = |∆𝑑𝑖𝑥| + |∆𝑑𝑖𝑦| + |∆𝑑𝑖𝑧| + |∆𝛼𝑖| + |∆𝛽𝑖| + |∆𝛾𝑖| (1) 

where ∆𝑑𝑖𝑥 = 𝑑(𝑖−1)𝑥 − 𝑑𝑖𝑥 and similarly for other rigid body parameters [𝑑𝑖𝑥 𝑑𝑖𝑦  𝑑𝑖𝑧 𝛼𝑖 𝛽𝑖  𝛾𝑖]. 

We used maximal FD as summarized head motion value for each participant. In Dataset 1, we did not 

observe any significant difference in head motion across cLBP patients before maneuver, after maneuver, 

and HCs (0.57 ± 0.04, 0.59 ± 0.04, and 0.51 ± 0.06 respectively [mean ± standard error of mean]; p > 0.05 

for all comparisons using t-test; Figure S16). The head motion was not correlated with pain severity (r= 

0.02, p =0.86), fraction rate (r =0.04, p =0.56), and dwell time (r =0.003, p =0.97). Similar results were also 

found in Dataset 2 showing that head motion did not differ between cLBP patients in Session 1 (0.74 ± 

0.11), in Session 2 (0.87 ± 0.08), and HCs (0.88 ± 0.08), as well as in Dataset 3 showing that head motion 

did not differ between cLBP patients (0.59 ± 0.10) and HCs (0.56 ± 0.06) (Figure S16). 

 

Supplementary Figure 16. Summarized head motion values (mean ± SEM) for different groups. Errorbars 

represent the standard error of the mean. Each circle represents the data (maximal FD) for an individual. 

N=90 and 74 for cLBP patients and HCs in Dataset 1, N=30 and 30 for cLBP patients and HCs in Dataset 

2, N=25 and 25 for cLBP patients and HCs in Dataset 3).   
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Supplementary Note 6: Inclusion/Exclusion criteria 

Inclusion Criteria: 

a) Volunteers 18-60 years of age. 

b) Meet the Classification Criteria of chronic LBP (having low back pain for more than 6 months). 

c) At least 4/10 clinical pain on the 11-point LBP intensity scale. 

d) Must have had a prior evaluation of their low back pain by a health care provider, which may have 

included radiographic studies. Documentation of this evaluation will be sought from Partners or outside 

medical records and kept in the subject’s research record. 

 

Exclusion Criteria: 

a) Specific causes of back pain (e.g. cancer, fractures, spinal stenosis, infections). 

b) Complicated back problems (e.g. back surgery, medicolegal issues). 

c) Conditions making study participation difficult (e.g. paralysis, psychoses, or other severe psychological 

problems). 

d) The intent to undergo surgery during the time of involvement in the study. 

e) History of cardiac, respiratory, or nervous system disease that, in the investigator’s judgment, precludes 

participation in the study because of a heightened potential for adverse outcomes. For example: asthma or 

claustrophobia. 

f) Presence of any contraindications to MRI scanning. For example: cardiac pacemaker, metal implants, 

fear of closed spaces, pregnancy. 

g) Use of prescription opioids greater than 60 mg morphine equivalents per day or steroids for pain. 
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h) Active substance abuse disorder in the past 24 months, as determined by self-report and/or urine 

toxicology. 
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Supplementary Methods: Dynamic functional network connectivity (dFNC) state analysis 

The framework of characterizing dynamic rsFC to detect atypical functional dynamics in chronic pain is 

shown in Figure S17. In step 1, we conducted a group independent component analysis (GICA) with a 

reference template (identified from large sample datasets of Human Connectome Project and Genomics 

Superstruct Project) to decompose whole brain resting-state fMRI data into multiple independent 

components (Supplementary Figure 17.1). Following GICA, we selected intrinsic component networks 

(ICNs) from the independent components according to their spatial activation maps. In step 2, we calculated 

dFNC among ICNs using a sliding window approach with graphic LASSO (Supplementary Figure 17.2). 

In step 3, we conducted a k-means-based hard clustering on the dFNC estimates to identify distinct FC 

states (dFNC states) and the frequency of their occurrence (fraction rate and dwell time), which together 

allowed us to construct a profile of the brain connectivity dynamics during a given period for each 

participant (Supplementary Figure 17.3). The profile derived for one participant is shown in Supplementary 

Figure 17.3C. This profile captures changes in the dFNC state for each participant during a 6-min scan. In 

step 4, we applied graph theory measures on different dFNC states to demonstrate the efficiency of 

information transfer in dynamic brain networks. 
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Supplementary Figure 17. Analysis framework to study dynamic functional network connectivity (dFNC) 

in patients with chronic pain. Four major steps were included: 1) perform group independent component 

analysis (GICA) with a spatial reference template and select intrinsic connectivity networks (ICNs); 2) 

estimate dFNC; 3) perform clustering state analysis; and 4) perform dynamic topologic analysis. 

 

Group independent component analysis 

The group independent component analysis (GICA) was performed using GIFT toolbox 

(mialab.mrn.org/software/gift/). We used the group template as a reference within a spatially constrained 

ICA algorithm to compute individual spatial maps and time-courses for all three datasets. In GICA, 

principle component analysis (PCA) was performed prior to ICA (this step was included in the GICA 

framework and implemented by GIFT toolbox). In PCA, the global mean signal per time point was removed 

as the standard PCA processing step during subject-level PCA reduction. This technical point is detailed 

and Allen et al 9. Additional postprocessing steps on time courses were conducted to remove remaining 

noise sources, including 1) detrending linear, quadratic, and cubic trends; 2) conducting multiple 
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regressions of the six realignment parameters and their temporal derivatives; 3) despiking detected outliers; 

and 4) low-pass filtering with a cutoff frequency of 0.15 Hz. 

 

dFNC estimation 

For each subject, we estimated dFNC between the time courses (119 time points, 159 time points, and 

158 time points for Dataset 1, Dataset 2, and Dataset 3) of ICNs using a sliding window approach. We 

used a tapered window, which was obtained by convolving a rectangle (window size = 20 × TRs = 60 

s) with a Gaussian (σ = 3) to localize the dataset at each time point. The window was slid in steps of 1 

TR, resulting in T = 99/139 total windows (Dataset 1/Dataset 2). The window size was selected based 

on the fMRI TR and according to previous studies showing that a window size in the range of 30 s to 

1 min is a reasonable choice for capturing dynamic patterns in functional connectivity 10,11. We 

calculated the covariance matrix with windowed data to measure the dFNC between ICNs. The dFNC 

estimates of all windows for each subject were concatenated to form a C × C × T array (where C 

denotes the number of ICNs and T denotes the number of windows), which represented the changes in 

functional connectivity between ICNs as a function of time.  

The Dataset 3 used for cross-site validation had a TR of 2.5 secs. Therefore, we used a window size of 

24 TRs (i.e., 60 s). Other procedures were identical to those used in the first two datasets. 

 

State cluster analysis 

To assess the dFNC patterns that reoccur over time, we conducted hard clustering on the dFNC estimates. 

We used the K-means clustering method with L1 distance function to cluster the windowed dFNC estimates 

into a set of separate clusters. Similar to EEG microstate analysis 9, we first chose subject-specific 

exemplars, which are the time windows with local maxima in FNC variance across all connectivity pairs. 
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Then, we conducted the k-means clustering on these exemplars of all patients and controls and combined 

and repeated it 100 times (with random initialization of centroid position) to obtain the group cluster 

centroids (functional dFNC states). The optimal number of centroid states was estimated by the silhouette 

method, which measures how similar an object is to its own cluster compared to other clusters. The optimal 

number of clusters was determined as k = 2, with each cluster representing a functional dFNC state. We 

used the obtained group centroids as the initial centroids to cluster each subject’s windowed dFNC. 

Clustering the dFNC of the Dataset 3 was based on calculating the Euclidian distance between each dFNC 

and the centroids of the two states identified from Dataset 1. 

 

Dynamic topological analysis 

We applied graph theory analysis to investigate the topological organization of the functional dFNC states 

and compare it between cLBP and HCs. For this analysis, we defined those GICA-identified 45 ICNs as 

nodes and the dFNC between them as edges, and we constructed a 45×45 connectivity matrix for each 

subject and each state. The graph theory analysis was performed using the GRETNA software 

(http://www.nitrc.org/projects/gretna) 12. Similar to previous studies 12,13, we first applied a sparsity 

threshold S (the ratio of the number of actual edges to the maximum possible number of edges in a network) 

to sparsify all connectivity matrices that ranged from 0.1 to 0.35 with a step of 0.05 based on the ranges of 

previous studies 14–16. We then generated an undirected and unweighted adjacency matrix for each subject 

and each state by setting edges as 1 or 0 (edges were designated as 1 if an edge between node i and node j 

was larger than the threshold we selected, and 0 if it was smaller than the threshold; absolute values of 

connectivity were considered).  

For the adjacency matrix at each sparsity threshold, we calculated global and local network efficiency to 

investigate local and global information transfer 17. In brief, we defined efficiency as inversely proportional 

to the harmonic mean of the shortest distance (number of edges) between all possible pairs of nodes. The 

http://www.nitrc.org/projects/gretna
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global efficiency was the average efficiency across all node pairs, while the local efficiency was the average 

of the nodal local efficiency within neighbors of the node. To avoid the specific selection of a threshold, 

we applied an area under the curve (AUC) approach, which has been widely used in previous studies 14,15. 

For each topological measure, we calculated the AUC within the sparsity range and compared the AUC 

between cLBP and HCs for each dynamic state.  
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